EPR spectroscopic analysis of U7 hammerhead ribozyme dynamics during metal ion induced folding.
نویسندگان
چکیده
Electron paramagnetic resonance (EPR) spectroscopy was used to examine changes in internal structure and dynamics of the hammerhead ribozyme upon metal ion induced folding, changes in pH, and the presence and absence of ribozyme inhibitors. A nitroxide spin-label was attached to nucleotide U7 of the HH16 catalytic core, and this modified ribozyme was observed to retain catalytic activity. U7 was shown by EPR spectroscopy to be more mobile in the ribozyme-product complex than in either the unfolded ribozyme or the ribozyme-substrate complex. A two-step divalent metal ion dependent folding pathway was observed for the ribozyme-substrate complex with a weak first transition observed at 0.25 mM Mg2+ and a strong second transition observed around 10 mM Mg2+, in agreement with studies using other biophysical and biochemical techniques. Previously, ribozyme activity was observed in the absence of divalent metal ions and the presence of high concentrations of monovalent metal ions, although the activity was less than that observed in the presence of divalent metal ions. Here, we observed similar dynamics for U7 in the presence of 4 M Na+ or Li+, which were distinctively different than that observed in the presence of 10 mM Mg2+, indicating that U7 of the catalytic core forms a different microenvironment under monovalent versus divalent metal ion conditions. Interestingly, the catalytically efficient microenvironment of U7 was similar to that observed in a solution containing 1 M Na+ upon addition of one divalent metal ion per ribozyme. In summary, these results demonstrate that changes in local dynamics, as detected by EPR spectroscopy, can be used to study conformational changes associated with RNA folding and function.
منابع مشابه
Existence of efficient divalent metal ion-catalyzed and inefficient divalent metal ion-independent channels in reactions catalyzed by a hammerhead ribozyme.
The hammerhead ribozyme is generally accepted as a well characterized metalloenzyme. However, the precise nature of the interactions of the RNA with metal ions remains to be fully defined. Examination of metal ion-catalyzed hammerhead reactions at limited concentrations of metal ions is useful for evaluation of the role of metal ions, as demonstrated in this study. At concentrations of Mn2+ ion...
متن کاملIon-induced folding of the hammerhead ribozyme: a fluorescence resonance energy transfer study.
The ion-induced folding transitions of the hammerhead ribozyme have been analysed by fluorescence resonance energy transfer. The hammerhead ribozyme may be regarded as a special example of a three-way RNA junction, the global structure of which has been studied by comparing the distances (as energy transfer efficiencies) between the ends of pairs of labelled arms for the three possible end-to-e...
متن کاملThermodynamics of ion-induced RNA folding in the hammerhead ribozyme: an isothermal titration calorimetric study.
The hammerhead ribozyme undergoes a well-defined two-stage conformational folding process, induced by the binding of magnesium ions. In this study, we have used isothermal titration calorimetry to analyze the thermodynamics of magnesium binding and magnesium ion-induced folding of the ribozyme. Binding to the natural sequence ribozyme is strongly exothermic and can be analyzed in terms of seque...
متن کاملFolding of the natural hammerhead ribozyme is enhanced by interaction of auxiliary elements.
It has been shown that the activity of the hammerhead ribozyme at microM magnesium ion concentrations is markedly increased by the inclusion of loops in helices I and II. We have studied the effect of such loops on the magnesium ion-induced folding of the ribozyme, using fluorescence resonance energy transfer. We find that with the loops in place, folding into the active conformation occurs in ...
متن کاملEntropy-driven folding of an RNA helical junction: an isothermal titration calorimetric analysis of the hammerhead ribozyme.
Helical junctions are extremely common motifs in naturally occurring RNAs, but little is known about the thermodynamics that drive their folding. Studies of junction folding face several challenges: non-two-state folding behavior, superposition of secondary and tertiary structural energetics, and drastically opposing enthalpic and entropic contributions to folding. Here we describe a thermodyna...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 44 38 شماره
صفحات -
تاریخ انتشار 2005